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Shape profile of compactlike discrete breathers in nonlinear dispersive lattice systems
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We study the spatial decay profile of compactlike discrete breathers in nonlinear dispersive lattices. We show
that the core region of such nonlinear localized excitations can be described by a cosinelike spatial shape while
the tail region decays with a faster than exponential law, such as a superexponential one. We discuss the
relation of the tail decay to properties of space-time separability.
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Since the publication of the paper by Rosenau and Hym
@1# showing that solitary wave solutions supported by no
linear wave equations may compactify under nonlinear d
persion, the idea of compact localized solutions of nonlin
systems has gained considerable interest. They showed t
Korteweg–de Vries–type equation with nonlinear dispers
supports exact compacton solutions of the form

u~j!5A cosn~Bj! ~1!

for uBju<p/2, u(j)50 otherwise, wherej5x2vt and the
parametern depends on the order of the nonlinear dispers
in the equations.

It is well known that nonlinear equations with linear di
persion admit solitary waves, called solitons, that are infin
in extent. On the other hand, Rosenau and Hyman’s stu
showed that nonlinear dispersion can cause qualita
changes to the nature of genuinely nonlinear phenom
The interaction of nonlinear dispersion with nonlinear co
vection generates exact compact structures~compactons!,
free of exponential tails. The stability analysis has sho
that compactons are stable structures@2#. Numerical simula-
tions of the nonlinear dispersive equations have also reve
the existence of compact traveling breathers@3#.

It is known that many nonlinear lattice models with line
dispersion give rise to energy localization effects and sup
stable soliton/kink structures. Kivshar first conjectured t
intrinsic localized modes in a nonlinear dispersive latt
may exhibit compactlike properties@4#. As a model of non-
linear dispersion, he considered a one-dimensional lat
with purely anharmonic nearest-neighbor interaction
which the equation of motion of thenth atom is given by

d2un

dt2
5@~un112un!31~un212un!3# ~2!

and obtained a solution of this equation similar to Eq.~1!.
Later Flach argued that even for such a nonlinear disper
model~2!, the nonlinear localized excitations cannot have
exact compact structure@5#. Analysing the result in the tail o
the nonlinear localized excitations , it was shown that
amplitudes of the lattice displacements are not exactly z
outside a finite volume of the solution, and in leading ord
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the amplitudes decay according to thesuperexponentiallaw
e2a expbn, wherea andb are positive numbers that depend o
the parameters of the model Hamiltonian. On the other ha
more recently, Dinda and Remoissenet@6# demonstrated tha
a class of exact continuous compacton solutions@of the form
as in Eq.~1!# of a low-order continuum approximation of th
discrete equations survives on finite times when substitu
in the corresponding lattice equations of motion. They a
studied the ability of the compactlike kink to propagate a
obtained the parameter region in which a compactlike k
can show up with stable ballistic propagation@7#. Since all
these methods for obtaining compactons in discrete nonlin
lattices are approximate ones, Eleftheriouet al. @8# generated
numerically exact discrete compactlike breathers of non
ear dispersive lattices starting from the anticontinuous li
and by using the Newton scheme@9,10#. They observed tha
compactlike breathers exist in the whole range from strong
intermediate to small coupling constants provided the in
action between the nonlinear oscillators is purely nonline
i.e., that there exists nonlinear dispersion. However, while
the continuous limit compact breathers are exact compa
solutions with strict compact support, in the other extrem
i.e., when close to the anticontinuous limit, breathers beco
compactlike by acquiring a very small tail. The latter w
shown to decay in a faster than exponential fashion and
fitted in Ref. @8# to a stretched exponential lawe2gns

with
exponents.4.

All previously mentioned investigations clearly point
the existence of discrete compact~or compactlike! breathers
in nonlinear dispersive lattices whose main feature is
faster than exponential tail decay. Nevertheless, there is s
lingering ambiguity regarding the overall shape profile a
in particular the spatial configuration of the core and t
regions of the breather. On one side, Kivshar’s solution@4# is
an approximation in the tails, since breather amplitudes
not exactly vanish there. On the other side, cosinelike d
crete breathers were shown to have finite-time persistenc
lattices@6#, and although they describe proper bounded so
tions in the regime close to the continuum limit, they do n
have the feature of long-term stability@8#, even though for a
relatively short time they seem to be quite stable. The su
exponential decay law obtained in@5# for localized excita-
©2001 The American Physical Society01-1
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tions in similar nonlinear dispersive lattices is valid only
the tail region of the solutions provided space-time sepa
bility holds. Finally, the issue of the spatial variation in th
core region of compactlike discrete breathers has not b
fully addressed.

As has been mentioned above, the question of the ove
shape of the discrete compactlike breather is very import
From the application point of view, it is desirable that t
discrete compact breather does not have an infinite tail a
solitons. Accordingly, in this Brief Report we study the sha
profile of the lattice displacement patterns of breather so
tions in nonlinear dispersive lattices. We compare the sh
of the core region with that of the tail region and check
there is an overall shape that fits displacements of all
lattice points in the chain.

We start with a model of oscillators in a one-dimension
chain with nearest-neighbor anharmonic interaction. In c
trast to@4#, each of the oscillators moves in a nonlinear o
site potential. This is because, as observed in earlier stu
@6,8#, the presence of the on-site potential is a major requ
ment for the stability of the compactlike discrete breathe
The equation of motion for the displacement at the siten is

d2un

dt2
5k@~un112un!31~un212un!3#2V8~un!. ~3!

We use three different nonlinear substrate potentials,
~soft! double-well potentialVs(x)52 1

2 (x21)21 1
4 (x21)4,

the hardf4 potentialVh(x)5 1
2 x21 1

4 x4, and the~soft! Morse
potentialVm(x)5 1

2 (12e2x)2.
First we present the numerical results. Compactlike d

crete breathers are generated in the anticontinuous
~small k) with the help of a Newton scheme and are gen
ally stable. We start withk50 and excite one oscillator, with
all others being at rest. The solution is then continued
finite values ofk. Here we will considerk50.1 andk50.3.
The numerical data clearly show that the decay in the n
linear dispersive lattice is much faster than the usual ex
nential decay of the linear dispersive lattice. This is shown
the inset of Fig. 1. At the same time, we again confirm t
the breather tail amplitudes are nonzero. This also holds
V(x)50 ~cf. @10#!. Most importantly, we observe in the ma
body of Fig. 1 that the shifted double logarithms of t
breather amplitudes fall onto a single master curve in
tails. At the same time, the core region~central site and two
nearest neighbors! clearly follows a different shape law.

In order to understand the tail behavior, we first consi
the Vh case. Similar to the case of homogeneous poten
functions@5#, we may use the ansatzun(t)5(21)nfnG(t)
which separates space and time. AlthoughVh(x) is not a
homogeneous function, it contains in addition to the qua
term just one quadratic term, which keeps the property
space-time separation. We arrive at the set of equations

G̈~ t !1G~ t !1CG3~ t !50, ~4!

k@~fn111fn!31~fn211fn!3#1fn
35Cfn . ~5!
01760
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Here C is an arbitrary non-negative separation consta
While the functionG(t) can be easily found by implicitly
integrating Eq.~4!, the existence of a spatially localized pro
file for the amplitudesfn was proven in@11#. As the spatial
decay is obviously faster than exponential, we immediat
find the asymptotic law~to the right of the breather cente!
usingAn5fn max„G(t)…:

kAn5An21
3 . ~6!

Herek is a constant which depends onk. This spatial decay
is a superexponential one, since

lnu lnuAnuu'n ln 3. ~7!

This asymptotic law holds providedk is bounded. In Fig. 1,
we show that Eq.~7! indeed holds in the tails of our breathe
solutions. In addition, we plot in Fig. 2 the values fork
computed with the help of Eq.~6! at each lattice site inde
pendently. We observe that for theVh case indeed the
breather tails are characterized by a well-defined value ok.

For the cases ofVm andVs , we cannot separate time an
space. Thus we cannot obtain a superexponential decay
in the tails as done above. Yet the numerical results in Fig
show that Eq.~7! holds. At the same time, the data in Fig.
suggest thatk did not converge to an asymptotic value
compared to theVh case. Let us give some reasons for the
observations. As we consider time-periodic solutions,
may expand the temporal evolution at each site into a Fou
series with respect to time:

un~ t !5 (
k52`

1`

ukne
ikvt. ~8!

FIG. 1. Dependence of the double logarithm of the breat
amplitude for different cases versusn. Note that curves are verti
cally shifted to observe a master curve in the tails.Vh , circles;Vm ,
squares;Vs , triangles. Open symbols,k50.1; filled symbols,k
50.3. The straight lines have slopes6 ln 3. Inset: Dependence o
the logarithm of the breather amplitude versusn for the same cases
Note the scale of they axis.
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In contrast to the case of space-time separation, where
Fourier componentukn shows up with one and the sam
superexponential decay law, here we have to insert the an
~8! into the equations of motion, sort terms with equal exp
nents, and set the prefactors to zero. The correspon
coupled nonlinear algebraic equations for the coefficientsukn
have then to be solved. Considering the tail of a breather
neglecting the interaction ink space, we would obtain
k-dependent superexponential decay laws for each com
nent. The one with the weakest decay will be the leadi
order asymptotic superexponential decay. Yet the result
Fig. 2 and numerical computations of theukn from our solu-
tions show that~i! the asymptotic law is not fully reache
with our data, and~ii ! interactions ink space cannot be ne
glected for these lattice sites. Thus, we can state that wh
single superexponential decay will emerge for large distan
from the breather center, for the lattice sites closer to the c
a mixture of different superexponential laws should ho
@due to Eq.~8!#. The observation of thek-independent par
of this law in Fig. 1 is due to the fact that lnk is bounded and
small compared to lnuAnu in the tails.

We now derive the lattice displacement patterns of
compactlike discrete breather in the core region. Let us s
with the Vh case. Using Eq.~4! we find a solutionG(t)
5A cn(wt,s), where cn(wt,s) is the Jacobi elliptic function
with the moduluss. For the spatial variation, we assume
solution to Eq.~5! in the form

fn5cos@q~n2n0!#. ~9!

Substituting Eq.~9! in Eq. ~5! we get an equation forq:

2 cos3 q13 cos2 q211
1

4k
50. ~10!

This equation has realq solutions for 1/4k,1. For k50.3,
the allowed solutions areq50.429p and q50.583p. To
compare it with the numerical results, we fit the lattice d

FIG. 2. Dependence of the constantk on n when computed
independently at each lattice site using Eq.~6!. Symbols as in
Fig. 1. Lines are connecting data and serve as guides to the e
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placement pattern as given in Eq.~9! with the core region
~the central and the two nearby sites! and obtain the value o
q50.403p, which agrees quite well with the analytic valu
q50.429p as obtained above. For theVs and theVm case,
however, the space and time variables cannot be sepa
and thus it is not possible to make any analytic predict
about the spatial variation of the lattice displacement patt
in the core region of the corresponding compactlike discr
breathers. However, even for these cases also if we assu
spatial variation of the form of Eq.~9! in the core region,
then the corresponding value ofq as obtained by fitting the
numerical data points isq50.459p for the Vs case (k
50.3). For the Morse potential the similar fitting givesq
50.431p for k50.1

In conclusion, we have studied the shape profile of d
crete compactlike breathers in nonlinear dispersive lattic
While in a continuous system compact breathers are e
cosine solutions with strict bounded support@Eq. ~1!#, in
lattices compact breathers are characterized by lattice
placements that have two distinct spatial patterns. In the c
region, a bounded cosinelike shape prevails while the
region is clearly characterized by a much faster than ex
nential spatial decay that is well described by the superex
nential decay law. As a result, even though in nonlinear d
persive lattices compactlike breathers have a tail, the latte
very short and decays in an ultrafast fashion unlike the c
responding exponential decay in lattices with linear disp
sion. This particular property makes compactons very in
esting in the study of pattern formation, as the observ
stationary and dynamical patterns in nature are usually fi
in extent. Also, compactons can be of interest for ene
storage, since due to the lack of an exponential tail th
would not interact with each other until the point of conta
~short-range interaction!, which leads to a much weaker mu
tual interaction between different compactlike discre
breathers in the same lattice. The lifetime of coexisting d
crete breathers is thus substantially increased. Similarly,
to the absence of long-range interaction, the compact
have an advantage over the solitons for data transmission
signal-processing purposes. We would also like to ment
that compacton solutions arise in the study of nonlinear
namics of shear waves in elastic plates. In this case,
nonlinear evolution equation for the shear displacements
duces to the modified Boussinesq equation~MBE! with non-
linear dispersion. The presence of the nonlinear dispers
terms modifies the structure of the soliton solutions of
MBE into compacton or peakons for different materials. R
cently, exact dark lattice compactons solutions have b
found in a model of Frenkel excitations@12#.
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